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The problem of how to reconstruct the parameters of a stochastic nonlinear dynamical system when they are
time-varying is considered in the context of online decoding of physiological information from neuron signal-
ing activity. To model the spiking of neurons, a set of FitzHugh-Nagumo �FHN� oscillators is used. It is
assumed that only a fast dynamical variable can be detected for each neuron, and that the monitored signals are
mixed by an unknown measurement matrix. The Bayesian framework introduced in paper I �immediately
preceding this paper� is applied both for reconstruction of the model parameters and elements of the measure-
ment matrix, and for inference of the time-varying parameters in the nonstationary system. It is shown that the
proposed approach is able to reconstruct unmeasured �hidden� slow variables of the FHN oscillators, to learn
to model each individual neuron, and to track continuous, random, and stepwise variations of the control
parameter for each neuron in real time.
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I. INTRODUCTION

Time variability and nonlinearity are natural ingredients
of physiological systems. In addition, a system’s environ-
ment and its own internal complexity often create a strong
fluctuational background that is frequently an essential fea-
ture of the dynamics. It is a context where physiological
models are rarely known from first principles, and model
identification and parameter inference become indispensable
from the points of view of both fundamental and applied
physiology �1,2� and in view of likely medical applications.
In many situations, the real-time tracking of physiological
parameters is the key to successful applications including,
e.g., brain-controlled interfaces �3,4�. However, the interplay
of noise, nonlinearity, and the time variability of the model
parameters makes it difficult to extract reliable information
from the data, and very difficult to do so quickly. Accord-
ingly, the simplifying assumptions of linearity and/or deter-
minism �2,5� are frequently made in an attempt to facilitate
inference rather than on physiological grounds.

In addition, physiologically important parameters that de-
scribe specific features of the system state or system dynam-
ics are not usually directly measurable and have to be in-
ferred from measurements of other types of information. At
present, there are no general methods available to solve this
problem if the model is stochastic, nonlinear, and nonstation-
ary, i.e., its parameters vary in time.

In paper I �6�, we introduced a general Bayesian frame-
work that allows one to identify a nonlinear stochastic model
from time-series data and to infer its time-varying parameters
in real time. In the present paper, we verify the approach by
applying it to the analysis of a model of physiological sig-
naling. The model chosen is a set of the FitzHugh-Nagumo
�FHN� systems �7–9�. It has been found useful in analyzing
dynamics of nerve fibers �10� and certain muscle cells in
heart tissue �11–13�. It has also been used intensively in stud-
ies of passive myelinated axons �14� and various forms of

arrythmia and cardiac activation evolution �15�. The control
of such neural-related dynamics is important in the context
of biotechnological applications ranging from neural models
of voluntary movement �16� to studies of control in nerve
conduction �17�.

In our model, the measured signals corresponding to fast
variables of the FHN system �e.g., action potentials� are
mixed by the unknown measurement matrix. Slow variables
are hidden, which is the case in most real applications. It is
assumed that physiological information is coded in the time-
varying control parameters � of each FHN system. Our goals
will be to reconstruct the hidden variables and the measure-
ment matrix, to learn the parameters of each individual sys-
tem, and to use this information for extracting the time varia-
tion of the control parameter � in real time. We will show, in
particular, that the approach is able to decode large stepwise
changes, as well as random and continuous variations of the
control parameter, for each oscillator in real time. Further-
more, we will show that the parameter-tracking algorithm
can effectively be embedded into the inferential learning
framework, enabling us to reconstruct both the unmeasured
�hidden� variables of the FHN oscillators and the model pa-
rameters. For simplicity, we will assume that FHN systems
are not coupled and that the dynamical equation for the slow
variable does not include a random force. However, both
coupling and noise in the hidden variables can be incorpo-
rated into the method, as will be shown elsewhere.

The paper is organized as follows. In Sec. II, a model of
FHN systems coupled by an unknown measurement matrix
is presented and then reduced to standard form suitable for
analysis within the Bayesian framework. Convergence of the
model parameters for the case of stationary signals is dis-
cussed in Sec. III. Their convergence and online tracking
when the system is nonstationary are presented in Sec. IV.
Finally, the results obtained are summarized and conclusions
are drawn in Sec. V.
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II. SYSTEM OF FITZHUGH-NAGUMO OSCILLATORS

In a typical physiological situation, neurons fire at the rate
of �5–10 s−1. The correlation time of the control parameter
is �500–1000 ms. The correlation times of other model pa-
rameters in the nonstationary case are �5 s. A typical sam-
pling rate for measurements is �20 kHz. In order to follow
the time variations, it is necessary for the computation time
to be less than the shortest characteristic time in the system,
i.e., that for variation of the control parameters. So we must
aim for a computational inference delay time of less than
500 ms.

To model this spiking activity, we use the well-known
FitzHugh-Nagumo system in the form

v̇ j = − v j�v j − � j��v j − 1� − qj + � j + �Dji�i,

q̇j = − �qj + � jv j ,

�� j�t��i�t��� = �ij��t − t��, j = 1:L . �1�

This system �1� represents the simplified dynamics of L non-
interacting neurons �8�, where v j model the membrane po-
tentials and qj are slow recovery variables. Figure 1 illus-

trates the dynamics for one oscillator in the absence of noise;
values of the other parameters are �=0.4, �=0.3, �
=0.0151, and �=0.0153.

We assume that the important physiological information is
encoded in the parameters �i, which control the frequency of
firing. In practice, this information is difficult to extract be-
cause signals collected from biological systems are noisy and
often mixed with an unknown measurement matrix. To ana-
lyze the situation in a realistic way, we introduce dynamical
noise into the model system �1� and a measurement matrix X
into the following measurement model:

yi = Xijv j . �2�

Here yi are measured variables, related to v j by linear trans-
formation with the unknown matrix X. An example of noisy
signals before and after the mixing is shown in Fig. 2. We
suppose that the only accessible information is contained in
yi. The problem is therefore to learn the model parameters
M= 	�i ,�i ,qi�0� ,�i ,Dij ,Xij
 from the time-series data 	yi
,
and to use this information for fast on-line tracking of the
time-varying parameters 	�i
 for each neuron. It was shown
in paper I that this problem can be treated within a general
inferential framework by integrating the middle set of equa-
tions in Eqs. �1� to obtain

qj�t� = � j�
0

t

d�e−��t−��v j��� + e−�tqj�0� . �3�

On substituting Eq. �3� into the top equation in Eqs. �1�, we
have
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FIG. 1. Numerical simulation of the FitzHugh-Nagumo oscilla-
tor �1�. �a� Examples of the time traces of v j �solid line� and qj

�dashed line�. �b� Nullclines are shown by the dashed �first equa-
tion� and dotted �second equation� lines, and the corresponding
phase trajectory is shown by the thin solid line.
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FIG. 2. �Color online� Time-series data generated by the model
�1�,�2� �a� before and �b� after mixing, for the parameters given in
Table I. Parameters �1 and �2 fluctuate between 0.35 and 0.45. The
dotted �red� lines show v1�t� and y1�t� and the solid �blue� lines
show v2�t� and y2�t�.
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v̇ j = − � jv j + �1 + � j�v j
2 − v j

3 + � j

− � j�
0

t

d�e−��t−��v j��� − e−�tqj�0� + �Dij� j . �4�

Here j=1, . . . ,L, and qj�0� is a set of initial coordinates for
the unobservable variable qj�t�. Thus the reconstruction of
unobservable variables qj�t� is reduced to the inference of the
L initial conditions qj�0�.

Furthermore, the variables v j�t� can also be excluded from
further consideration by using Eq. �2�. On substituting v
=X−1y into Eq. �4�, we obtain in vector notation

ẏ = X��X−1y� + X�1 + ���X−1y�2 + X�X−1y�3 + e−�tXq0

− �
0

t

e��t−��X��X−1y�d� + X� + X�D��t� , �5�

where q0=q�t=0�, � and � are matrices with �i and �i on the
respective diagonals, and

�X−1y�n = ��
i=1

L
x1iyi�n

. . . 0

] � ]

0 . . . �
i=1

L
xLiyi�n� .

Here xij are elements of the inverse matrix X−1.
The advantage of the presentation �5� is that it allows for

the fastest on-line tracking of the control parameters of the
system �1� in the case of small measurement noise. In what
follows, we demonstrate this point using as an example a
system of two FHN oscillators. However, the results reported
below can be readily extended to a set of L linearly coupled
FHN systems. We will refer to system �5� as “transformed
dynamics” to distinguish it from the “reduced dynamics” of
Eq. �4�.

III. STATIONARY DYNAMICS AND CONVERGENCE

To infer the parameters of the system of L FHN oscillators
�5� within the stationary regime, we introduce the following
base functions:

��x� = 	1,y1, . . . ,yL,y1
2,y1y2, . . . ,y1yL,y2

2,y2y3, . . . ,

y2yL, . . . ,y1
3,y1

2y2, . . . ,y1
2yL,y2

3,y2
2y1, . . . ,

y2
2yL, . . . ,yL

2yL−1,yL
3,	1, . . . ,	L,e−�t
 , �6�

where 	i is defined as follows:

	i � �
0

t

yi���e���−t�d� .

The number of base functions,

N� = 2 + 2L +
L�L + 1�

2
+ L2, �7�

increases as L2 with the number of systems. The number of
unknown coefficients of the system �5� is Nc=N�
L+L2

+ L�L+1�
2 ; it increases as L3 with the dimension of the system.

The first term in Nc is the full set of unknown coefficients,

because all possible combinations of the powers of y are
included in this set, i.e., it covers the whole model space of
the system with polynomial base functions up to power 3.
The second term in Nc is the number of unknown elements of
the measurement matrix X, while the third is the number of
elements of the unknown noise matrix. Only Ninf=N�
L
+ L�L+1�

2 coefficients can be inferred directly from the time-
series data 	yi
, and therefore only Ninf equations can be
formed to find the coefficients of the original system �4� and
the elements of the matrix X. In practice, however, the num-
ber of coefficients of the original system is always signifi-
cantly smaller than the full set Ninf, because of the symmetry
that is always present in real systems. In particular, the num-
ber of unknown coefficients in the original system �2�, �4� is
NM=6L+L2+ L�L+1�

2 �note that here we have counted coeffi-
cients for yi

2 and yi
3�. That is, for a system of two FHN

oscillators we have Ninf=29 equations to reconstruct NM
=19 coefficients.

So it should be possible at least in principle to reconstruct
all unknown coefficients of the original system for any num-
ber of FHN oscillators, provided that we can establish the
connection between the set

M̃ = 	�̃i,�̃ij, b̃ijk, c̃ijkl,�̃ij, q̃i�0�,D̃ij


of measured variables of the transformed system �5� and the
set

M = 	�i,�i,bi,ci,�i,qi�0�,Dij,Xij


of unknown parameters of the original reduced dynamics �4�,
where bi= ��i+1� and ci=−1. Note that the coefficients �̃ij,

b̃ijk, c̃ijkl, and �̃ij in the expression for M̃ above correspond
to the coefficients Aij, Bijk, Cijkl, and �ij in Eqs. �36�, �37� of

paper I. In the two-dimensional �2D� case, the set M̃ of
variables of the transformed dynamics �5� corresponds to the
following set of base functions:

��x� = 	1,y1,y2,y1
2,y2

2,y1y2,y1
3,y1

2y2,y1y2
2,y2

3,	1,	2,e−�t
 .

�8�

Once parameters of the transformed dynamics are inferred,
one has to reconstruct parameters of the original model �1�.
In general form, the connection between the two sets of co-
efficients is given by Eqs. �37�–�39� of paper I. Here we
introduce explicit relations for the case L=2,

X−1��1

�2
� = ��̃1

�̃2
� , �9�

�q0,1

q0,2
� = X−1�q̃1

q̃2
� , �10�

��1 0

0 �2
�X−1 = X−1��̃11 �̃12

�̃21 �̃22
� , �11�

��1 0

0 �2
�X−1 = X−1��̃11 �̃12

�̃21 �̃22
� , �12�
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D̃X−1 = X−1D . �13�

The unknown elements xij of the inverse measurement ma-
trix X−1, and the parameters with tildes, are the model pa-
rameters of the transformed system �5� that can be inferred
directly using time-series data 	yi
. Relations �9�–�13� allow
one to reconstruct 15 unknown parameters of the original
system, including elements of the noise and measurement
matrices. Note, however, that the coefficients �1+�i� can
also be assumed unknown in general and that the following
relations can be used to reconstruct them:

�1 + �1 0

0 1 + �2
��x11

2 2x11x12 x12
2

x21
2 2x21x22 x22

2 �
= X−1�b̃111 b̃112 b̃122

b̃211 b̃212 b̃222

� . �14�

Similarly, the relationships between the coefficients for poly-
nomials of power 3 are given by

�− 1 0

0 − 1
��x11

3 2x11
2 x12 2x11x12

2 x12
3

x21
3 2x21

2 x22 2x21x22
2 x22

3 �
= X−1�c̃111 c̃112 c̃121 c̃122

c̃211 c̃212 c̃221 c̃222
� , �15�

Note that in general one could introduce unknown param-
eters for the coupling between the FHN systems and use
relations similar to Eqs. �12�, �14�, and �15� to reconstruct
these parameters. Note also that it is a simple matter to ex-
tend Eqs. �9�–�15� to encompass the L-dimensional case.

In the new notation, the two-dimensional equations for
the reduced dynamics take the form

ẏi = �̃i + �̃ijyj + b̃ik1k2
yk1

yk2
+ c̃ik1k2

yk1
yk2

2 + e−�tq̃i

− �ij�
0

t

e��t−��yjd� + �D̃ij� j�t� , �16�

Equation �16� with the N�=13 base functions �8� allows one
to apply explicitly the results of paper I �6� to infer the Ninf
=29 parameters of the transformed system �16�. Indeed, the
base functions �8� and the model parameters in Eq. �16� can
be used to factorize the vector field according to Eqs. �7� and
�8� of �6�. The minus log-likelihood function and its gradient
for the transformed system �16� can then be written using
Eqs. �6� and �26� of �6�. At the next step, Eqs. �10�–�14� of
the main algorithm of �6� can be used to reconstruct the
model parameters of the transformed system. Once the pa-
rameters of the transformed system have been inferred, one
can use Eqs. �9�–�13� to reconstruct the parameters of the
original model �1�.

In the rest of this section, we restrict ourselves to the 2D
case and analyze the convergence of the method under sta-
tionary conditions. Our goals will be to show the correlation
between the convergence of the model parameters and the

decay of the eigenvalues 	�i
 of matrix �̂−1 �see paper I�, and

to demonstrate how one can speed up the convergence by
orders of magnitude by reducing the number of base func-
tions in an appropriate way.

A. Convergence of the parameters of the transformed
dynamics

In this section, we analyze the convergence of the model
parameters of the reduced dynamics �4� as a function of T
=hN, where h is the sampling time step and N is the number
of points in a block of data. The model �1� and �2� was
integrated using the Heun scheme �18� with the set of param-
eters shown in Table I. The fast variables of the FHN oscil-
lators v1�t� and v2�t� were mixed by the measurement matrix
X to generate synthetic time-series data y1�t� and y2�t� of
measured signals. The latter signals were used as the input
for testing the algorithm. An example of the signals
v1�t� ,v2�t� and y1�t� ,y2�t� is shown in Fig. 2.

We now analyze the convergence of the method in the
case in which all parameters of the reduced model �5�, in-
cluding elements of the measurement matrix, are unknown.
An example of the convergence of parameters for the re-
duced model is shown in Fig. 3. The sampling rate was
35 kHz. We used nine blocks of data with 5000 points in
each block, and these blocks of data were generated at ran-
dom 1000 times to analyze the statistics of the convergence.
The results of the inference are summarized in Table II. It
can be seen that convergence of better than 3.5% is achieved
in less then 1 s, even though the coefficients of the highest
order polynomials are assumed unknown.

B. Reconstruction of the mixing matrix

To reconstruct both the mixing matrix X and the param-
eters of the original system M from the inferred parameters

M̃ of the transformed system �5�, we have to solve Eqs.

�9�–�13� with respect to elements of M̃. We note that, in the
general case of the measurement model, these equations are
nonlinear and can be written implicitly as Fk�M�=0, k
=1, . . . ,K, where K is the number of equations. In the par-
ticular case of transformation given by the simple form of
Eqs. �9�–�13�, the solution of this problem can be found by
using the standard nonlinear least-squares method �19�, al-
though an additional optimization over the set of initial val-
ues may be required. We stress that the present technique is

TABLE I. Parameter values of the model �1�, �2� used to gen-
erate stationary time-series data.

�1=0.35 �1=0.4

�2=0.20 �2=0.3

�1=0.0153 �=0.0151

�2=0.0153

d11=0.0002 d12=0.00007

d22=0.0002 d21=0.00007

x11=1.7 x12=0.8

x22=0.2 x21=0.9
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not restricted to the 2D case and can equally be applied to
the general case of N FHN oscillators.

We can now use the inferred parameters of the trans-
formed dynamics �preceding subsection, Fig. 3 and Table II�
to reconstruct both the elements of the measurement matrix
and the model parameters of the original system �4�. Ex-
amples of convergence of the model parameters and of the
elements of the measurement matrix are given in Figs. 4 and
5, and are summarized in Table III. It can be seen from the
table that a relative error of inference of better than 2% is
achieved within less than 1 s of measurement time.

In what follows, we will focus on the convergence of the
control parameters �i and analyze the accuracy and speed of
the convergence under various assumptions about the time

dependence of these parameters and information available
about other parameters of the system.

C. Convergence speed

We note that the calculation of the rate of convergence of
model parameters of stochastic nonlinear dynamical systems
is, in general, still an open problem. Here we provide a brief
discussion, however, based on the results of Sec. II C of
paper I �6�. These indicate that the eigenvalues of the matrix

�̂ �see Eq. �22� of paper I� play an important role in the
convergence of the model parameters. The meaning of the

matrix �̂ is twofold: first, �̂ is the covariance of the poste-
rior density, so it measures directly how sharply this distri-

bution is peaked about its mean value; second, �̂ is propor-

tional to D̂ � �̂k
−1 �see Eq. �22� of paper I�, so it is directly

influenced by the choice of the base functions and by the
correlations between them. It is clear, in particular, that in the
case of polynomial base functions, the lower the order of

polynomials, the smaller will be the eigenvalues of �̂−1, and
the faster will be their convergence. Indeed, the deviation of
the model parameters from their limiting mean values is pro-
portional to a linear combination of the eigenvalues �i of

�̂−1. So the convergence of the model parameters is deter-
mined by the values and decay rates of the largest eigenval-
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FIG. 3. Typical example of the convergence of parameters as a

function of signal length. �̃1 and b̃222 are plotted as functions of
time, i.e., of the number of data. The first point corresponds to a
block of 5000 data points; each successive point corresponds to an
additional 5000 data, as discussed in the text. Vertical bars show
standard deviations of the inferred values, calculated over 1000
realizations. The horizontal dashed lines indicate the true values of
the model parameters as given in Tables I and II.

TABLE II. Values of some of the original coefficients inferred
using 30 000 points. The actual values �second column� are com-
pared with the inferred values �third column�; standard deviations
are given in the last column.

Parameter Real Inferred Std. dev.

�̃1 0.9200 0.924384 0.022624

�̃2 0.3500 0.351001 0.009063

b̃222
1.7550 1.758011 0.037047

b̃112
−2.1086 −2.114731 0.068268

1

1.5

2

2.5

0 0.5 1

X
11

t (s)

(a)

0

0.5

1

1.5

0 0.5 1

X
12

t (s)

(b)

FIG. 4. �a� and �b� Typical examples of convergence for two
components of the measurement matrix X as a function of the mea-
surement time t. The model parameters for this numerical test are
given in Table I. We have used nine data blocks with 5000 points in
each block. The standard deviations of the inferred parameters
shown by the vertical bars are calculated over 1000 realizations.
The horizontal lines show the true values of the model parameters.
The sampling rate was 35 kHz.
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ues of �̂−1. The latter in turn depend on the a priori infor-
mation available about the model parameters. For the
polynomial base functions, which is the case of transformed
dynamics �5�, the most important information from the point
of view of convergence speed is knowledge of the coeffi-
cients for the polynomials of higher order.

To illustrate this point, we calculate the eigenvalues of

�̂−1 under various assumptions about the number of known
parameters in the model. The results of this analysis are
shown in Fig. 6. It can be seen from the figure that when no
information is available about model parameters �i.e., all the

parameters are unknown�, the largest eigenvalue of �̂−1 has
an initial value of the order 102 and decays to 10−2 over a
measurement time t=1.3 s. The correlation between the de-
cay of the largest eigenvalue and the convergence of the �
parameters in this case is evident from Fig. 5. When the
coefficients of the cubic and quadratic terms in system �4�
are known, the value of the largest �i of �̂−1 �shown by the
blue dashed line in Fig. 6� is reduced by three orders of

magnitude. When all parameters of the system �4� are known
except the control parameters �i, the largest value of �i of

�̂−1 �shown by the black dotted lines in Fig. 6� is further
reduced by two orders of magnitude.

In the latter case, convergence of the inferred parameters
�i to their true values is much faster. To verify this point, the
following test was performed: �i� first a signal of length 1 s
was generated with stationary dynamics and used to infer all
the model parameters; �ii� next, the parameters �i were
changed in a steplike manner; and �iii� the convergence of
the inferred parameters �i was analyzed as a function of the
length of the step. The results are shown in Fig. 7. It is
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FIG. 5. �a� and �b� Convergence of the control parameters �1

and �2 as functions of the measurement time t. Values of the model
parameters for this numerical test are given in Table I. We have
used nine data blocks with 5000 points in each block. The standard
deviations of the inferred parameters shown by the vertical bars are
calculated over 1000 realizations. The horizontal lines show the true
values of the control parameters. The sampling rate was 35 kHz.
The insets in both figures show the decay of the largest eigenvalue

of �̂−1.

TABLE III. Values of some of the original coefficients inferred
using 30 000 points obtained from measurement matrix and real
parameter reconstruction. The actual values �second column� are
compared with the inferred values �third column�; relative errors are
given as percentages in the last column.

Parameter Real Inferred Rel. error

X11 1.7 1.686459 0.796526

X12 0.8 0.794263 0.717092

X21 0.2 0.196746 1.626811

X22 0.9 0.898222 0.197610

�1 0.4 0.406227 1.556788

�2 0.3 0.302462 0.820660

�1 −0.35 −0.351992 0.569082

�2 −0.2 −0.200376 0.188228

b1 1.35 1.357427 0.550145

b2 1.2 1.203863 0.321885

c1 −1.0 −0.999520 0.047957

c2 −1.0 −0.999114 0.088582

10-6

10-4

10-2

100

0.1 0.5 0.9 1.3

<
λ i

>

t (s)

FIG. 6. �Color online� The largest eigenvalues �i of the matrix

�̂−1 under different assumptions: �i� when none of the coefficients
of the dynamics in Eq. �4� are known �full red lines�; �ii� when the
coefficients of the third and second powers are known �dashed blue
lines�; �iii� when all parameters except �i are known �dotted black
lines�. The dynamical coefficients are the same as in Fig. 4. The
number of runs to obtain the averaged convergence was 1000 for
each data block size. The actual distribution for each eigenvalue is
highly asymmetric over the number of the runs, and typical values
of �i are lower than their respective means.
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evident that the time scale for the convergence of � is
�20 ms as compared to the convergence over �1 s in Fig.
6. It is therefore clear that the computational delay time of

500 ms desired for physiological applications can be
achieved easily within our Bayesian framework. Next, we
consider the efficiency of the method under nonstationary
conditions.

IV. NONSTATIONARY DYNAMICS

We consider the situation when all parameters except �i
�Eq. �4�� are fixed at the values given in Table I, but the
control parameters �i are allowed to change, either stepwise
or continuously.

A. Stepwise changes of control parameters

1. Unknown parameters

In this section, it is assumed that none of the parameters
of the model are known and that they have to be inferred at
each step of the measurements. The parameters �1 and �2 are
allowed to change at random in time in a steplike manner,
and remain constant between steps. The time interval be-

tween steps is approximately five periods of firing of the
action potential and contains one block of data with 20 000
points. Other parameters of the model are fixed at the con-
stant values given in Table I. At each step, we infer all pa-
rameters of the model assuming their initial values to be zero
and their initial dispersion to be infinity, as already discussed
above.

The results of this test are shown in Fig. 8. The inferred
values of parameter �1 are compared with their true values in
Fig. 8�a�. The time trace of the unknown coordinate q1�t� is
compared with the corresponding reconstructed time trace
q̃1�t� in Fig. 8�c�. The latter time traces were reconstructed as
follows. First, the initial coordinates qi�t=0� and variables
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(b)

FIG. 7. Typical example of the fast convergence of the control
parameters �a� �1 and �b� �2, as functions of time �length of signal�.
The first point corresponds to 200 data points in one block. For each
next point, the number of data points was increased by 200. The
vertical lines show the standard deviations of the inferred values of
the control parameters calculated over 1000 runs. The horizontal
dashed lines indicate the true values of the parameters. The mixing
matrix is defined in Table III. The inferred parameters �i start from
an initial value of �1=�2=0.2 and converge quickly to the true
values of �1=0.4, �2=0.3. The coefficients �i, �i, �i, and dij are
given in Table I. The noise amplitude is �d1=�d2=0.012 25.
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FIG. 8. �Color online� Inference of the parameters of two un-
coupled FHN systems mixed by the measurement matrix. It is as-
sumed that �1 and �2 change stepwise while all other parameters of
the system are fixed and unknown. �a� The inferred values of �1

�dashed red lines� are compared with their true values �full blue
lines�. �b� Measured mixed values of the coordinate x1�t�. �c� In-
ferred values of the coordinate q1�t� �red dotted line� are compared
with its true values �blue solid line�. The other parameters are fixed
at the values given in Table I. The noise amplitude is �d1=�d2

=0.012 25.
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vi�t� were reconstructed using the inferred measurement ma-
trix X and Eqs. �3� and �10�. Second, the variable q̃�t� was
reconstructed using Eq. �33� of �6�,

qi�t = 0� = Xij
−1q̃j�t = 0� ,

yi�t� = Xij
−1yj�t� ,

q̃�tk� = �h

r=0

k

e−��tk−tr�y�tr� + e−�tkq�0�

−
h�

2
�y�tk� + e−�tky�t0�� . �17�

It can be seen from the figure that the time resolution of
the method is of the order of 500 ms even in the case when
none of the model parameters is known. As mentioned
above, however, the time resolution of the method can be
improved substantially by considering the other parameter of
the model to be known on the time scale of a few seconds
�corresponding to their correlation time, see Sec. II� and
tracking in time only the time-varying control parameters �i.

2. Tracking control parameters with known dynamics

We now investigate how fast physiological parameters
can be tracked in time. It was shown above �see Sec. III C�
that the convergence speed depends on information about the
model parameters that is available a priori, and that the fast-
est time resolution can be achieved when all the parameters
of the model, except the control parameters �i, are known.
To demonstrate this effect, we now assume that �1 and �2
change stepwise at random and remain constant between
steps as above, but that all other parameters of the model
remain fixed at known values. The time interval between
steps is now approximately 0.03 s and contains one block of
data with 1000 points. The results of Fig. 9 show that the
method can track random, stepwise variations of the control
parameters with a time resolution of less than 0.03 s �i.e.,
smaller by more than two orders of magnitude than in the
previous case where all parameters had to be inferred�.

B. Continuously varying control parameters with noise

To complete our analysis of the reconstruction of nonsta-
tionary dynamics of the physiological model, we now infer
smoothly varying parameters �1 and �2 with added noise,
without knowing any other parameters of the model. The test
is performed as follows: �i� all parameters of the model are
inferred from the first block �with 30 000 points� of station-
ary dynamics; �ii� for all other blocks of data, we use ac-
quired information to fix the model parameters constant at
the inferred values, and track in time only variations of the
control parameters �i. Each block of data �except the first
one� contains 12 000 points and has a time length t�0.34 s.
The time traces of the unknown variables qi�t� are recon-
structed at every step using Eqs. �17� as explained above.
The inferred time evolution of the control parameters �i is
compared with its true variation in Fig. 10. It is evident from
the figure that the method allows us to infer the unknown

constant parameters of the model, and then also to use this
information to track in time the nonstationary control param-
eters of the system with a time resolution of the order of
0.3 s.

V. CONCLUSION

In summary, we have explored the performance of the
Bayesian inferential framework for nonstationary dynamics
that we introduced in paper I �6� in relation to physiological
applications. We did so by modeling a physiological signal
as a set of fast variables yi, mixed by an unknown measure-
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FIG. 9. �Color online� Inference of the model parameters of two
uncoupled FHN systems mixed by the measurement matrix. It is
assumed that �1 and �2 change stepwise while all other parameters
of the system are fixed and known. �a� Inferred values �1 �short
elements of red dashed line� are compared with their true values
�short elements of full blue line� as a function of time. �b� The time
trace of the measured coordinate x1�t�. �c� The time trace of the
inferred coordinate q̃1�t� �red dotted line� is compared with its true
value q1�t� �blue solid line�. The values of the other parameters are
fixed, as given in Table I. The noise amplitude is �d1=�d2

=0.012 25.
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ment matrix, corresponding to the action potentials of sto-
chastic FHN oscillators. Our goal was to see whether we
could track on-line the control parameters �i of the model,
given that these can vary with correlation time �cor
�500 ms. It was assumed that the slow recovery variables of
the FHN oscillators were unavailable for measurement and
that the correlation time of all other unknown parameters of
the model was of the order of 5 s. We have established that
the method does indeed facilitate on-line tracking of �i with
a time resolution 
0.3 s. This was achieved by embedding

the fast on-line tracking of the control parameters within a
Bayesian learning framework for the more slowly varying
parameters of the system with a time resolution 
1 s.

We showed that the time resolution of the method is de-

termined by the eigenvalues of the matrix �̂−1= D̂ � �̂k
−1, and

therefore depends essentially on the choice and scale of the

base functions. Note that, while the eigenvalues of D̂ are
intrinsic to the system, the choice and scale of the base func-
tions can be controlled by the researcher. Specifically, we
demonstrated that by accumulating a priori information
about slowly varying model parameters, one can enhance the
time resolution of the control parameters by an order of mag-
nitude.

Several limitations of the method should be borne in mind
in adapting it to any particular application. As we have al-
ready mentioned, fast online applications require that mea-
surement noise be small. In addition, it was assumed that the
equations for the hidden variables are linear and determinis-
tic. The latter limitations can be removed, at least partially,
by writing the equation for the hidden variables in the more
general form q̇= f�q�+g�y�, where the homogeneous equa-
tion q̇= f�q� is integrable and the nonlinear function of the
measurable variable g�y� is arbitrary. One can then proceed
in exactly the same way as described in the present paper.
Furthermore, the method can be extended to encompass the
case of an integrable stochastic differential equation for the
hidden variables. To do so, a stochastic integral must be
added to the right-hand sides of the equations of reduced
dynamics. Finally, the method can be applied to the case in
which the dynamics of the system jumps at random between
different states, as, for example, in gating dynamics. Note,
however, that if the different states are characterized by dif-
ferent dynamical models, then the solution of the inference
problem can be obtained more generally within the frame-
work of a hybrid probabilistic approach, as will be described
in more detail elsewhere. We note that the method is also
useful when the low-dimensional dynamics is only a rough
approximation to the actual multidimensional complex dy-
namics of the system. The latter situation is often the case in
physiological and aerospace applications �21,22�.

We conclude, therefore �see also �6��, that the results ob-
tained are of broad interdisciplinary interest. They were re-
cently shown to be particularly useful in medical applica-
tions �20� and for the development of prognostics and
diagnostics techniques in aerospace applications �21,22�. The
method can readily be extended to encompass systems with
multiplicative and colored noise, and efforts toward these
ends are already in progress.
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FIG. 10. �Color online� Inference of �1 and �2 while smoothly
varying in the presence of noise. No prior knowledge of the model
parameters is assumed. �a� The inferred values of �1 �dashed red
lines� are compared with their true values �full blue lines�. �b� The
measured time trace of the mixed coordinate x1�t�. �c� The inferred
time trace of the mixed coordinate q̃1�t� �dashed red line� is com-
pared with its true value q1�t� �full blue line�. The values of the
other parameters are given in Table I. The noise amplitude is �d1
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